
Sci.Int.(Lahore),27(3),2421-2425,2015 ISSN 1013-5316; CODEN: SINTE 8 2421

May-June

DESIGN A SCHEDULER FOR A SIP SIGNALING NETWORK
Reza Gaemi

1,*
, Ahamd Reza Montazerolghaem

2
, S.-Kazem Shekofteh

3

1Department of Computer Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran

2,3Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

ABSTRACT: The increasing use of SIP in Next Generation Networks necessitates that SIP networks provide adequate control

mechanisms to optimize transaction throughput and prevent congestion collapse during traffic overloads. SIP throughput can

severely be degraded when an overload situation happens in the proxy servers due to several retransmissions from user agents.

In this paper we try to prevent throughput reduction by properly distributing the loads over available proxy servers. The

proposed scheme utilizes response time of the servers as the main decision factor. The algorithm is implemented in a real

environment using Spirent and Asterisk servers as call generator and load balancer respectively. The results of comparing the

proposed method with some well-known algorithms indicate considerable throughput improvement up to 15% with a Round-

Robin algorithm.

Keywords—Scheduler; Session Initiation Protocol; Asterisk.

1. INTRODUCTION
Nowadays, Voice over IP (VoIP) networks are widely used

spanning different levels of users such as organizations,

academic and home users, since the underlying network can

be an ordinary IP network which is a best-effort one. One of

the most important elements of these networks is the

signalling protocol. SIP is the most efficient used signalling

protocol[1], because it’s text-based and also end to end,

supports mobility, and is independent from transferred data

type. Despite these advantages, in networks connecting

millions of users it would not perform its functionality well.

This protocol is responsible for 1) establishing 2) managing

and 3) terminating a call session. More details can be found in

RFC3261 [1]. A session can be one of the four types: voice,

video, text, or a combination of these. In protocol stack, SIP is

an application protocol and SIP messages can be carried by

both TCP and UDP. In these networks there are three

components: User Agent (UA), proxy server, and other

messages. The overview of the order of messages which are

transferred between a user agent and a proxy server is

represented in Figure 1. arrows show the message

communications between network hops and after a call is

established, media stream which are shown in black arrows

will be transferred end to end. In Overload situation, INVITE

messages are dropped and not processed because its queue is

full. This case happens when the proxy does not have

sufficient processing resources. A 503 Service Unavailable

response message is then sent from proxy back to the user

agent and the user agent will start to retransmit its INVITE

message immediately. This trend will lead to congest not only

the proxy server but also the whole SIP network.

Two categories of solutions to overcome the problem of load

balancing are 1) overload control and 2) message distribution

mechanisms. In the former, there are two types of decisions to

make to prevent from overload situation, local: each proxy

will choose its strategy about overload independently, and

distributed: proxy servers cooperate about the decision. In the

latter, there exists a third party (so called a balancer) entity

that is responsible for well distribution of incoming messages

among proxy servers.

In this paper we propose a method for message distribution

mechanism. The balancer is in charge of scheduling incoming

messages to be transmitted to a proxy server. The most

important profit of the proposed load balancer is its message

scheduler component which decides the best destination proxy

server based on the history of the response times.

Upstream SIP Proxy Downstream SIP Proxy SIP User Agent SIP User Agent

INVITE
INVITE

INVITE
100 Trying

180 Ringing
180 Ringing

180 Ringing

200 OK
200 OK

200 OK

ACK
ACK

ACK

Media(end to end)

BYE
BYE

BYE

200 OK
200 OK

200 OK

Fig. 1. Establishing a session using SIP protocol

The remainder of this paper is structured as follows. Section 2

describes related work. Section 3 provides some background

on Load Scheduling and overload control. Section 4 describes

the Proposed Algorithm. Section 5 explains the experimental

testbed used for our experiments.

2. RELATED WORK

In [2] a load balancer is represented for three algorithms based

on counting the number of transactions or sessions processed

on a server: 1) counting the sessions, 2) counting the

transactions, and 3) counting the weighted transactions named

Transaction Least-Work-Left (TLWL). The best algorithm

among these three algorithms is TLWL that is used in Section

IV as a competitor for comparing our proposed algorithm

with. Some of the existing web server redundancy techniques

are involved to present a load sharing algorithm [3]. A similar

problem resides in the field of balancing HTTP requests [4].

The effects of a round-robin DNS on scalability of NCSA’s

web site is described in [5].

The idea behind [6] is based on intercepting the prerequisite

name resolution process in a typical client-server application

within the IP network. A weighted hashing random algorithm

that supports dialog in the SIP protocol to distribute messages

 2422 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(3),2421-2425,2015

May-June

is presented in [7]. Cheng et al. [8] proposed a dependable

SIP-based clustered architecture for VoIP and multimedia

applications that reduces the number of failed calls when one

of the dispatchers or SIP proxy servers gets down, hence it can

balance proxy servers' load and achieve fast failover.

Some load balancing techniques for real web sites – especially

high accessed ones – are described in [9] and [10]. There are

some other techniques applied at client-side for assigning

requests to servers which are presented in [11] and [12].

Ciardo et al. used request size to a web server for load

balancing of clustered web servers in [13].

The need to solve this load distribution problem in other

related domains has been considered and Balter and Schroeder

proposed Least-Work-Left (LWL) and Join-Shortest-Queue

(JSQ) respectively to be applied for task assignment to servers

[14; 15].

3. LOAD SCHEDULING SCHEME

The proposed load scheduling algorithm is described in this

section. The overall architecture of the algorithm is illustrated

in Figure 2. Clients send their request messages to the load

scheduler. The load scheduler then selects the best SIP server

to process these requests. Choosing the best server is the main

discriminator between various solutions to this problem. Our

attention aims at minimizing the average response time of the

SIP servers.

The first role of the load scheduling is classifying the input

request messages. There are two classes of request messages:

INVITE and Non-INVITE. In the proposed algorithm we

focused on INVITE messages and leave Non-INVITE

messages unscheduled. The main reasons for this approach

are: 1) An INVITE message is a starting message to establish

a session, therefore it consumes more computation times than

a Non-INVITE message. 2) When a session is established

between a client and a SIP server the subsequent messages

must be sent to the same server that the corresponding

INVITE message was sent.

Scheduler

SIP Servers

User Agent

Fig. 2. The overal architecture of the algorithm.

The second role takes care of response messages. The load

scheduler plays only the role of a relay in this step, since the

destinations of these messages are known. The load scheduler

performs the scheduling mechanism in two major phases:

Detection and Selection. In the Detection phase, the scheduler

calculates the current load of the servers based on the

weighted average response time (WART) of processing the

previous request messages sent to each server. Response time

for each request is the time period between sending the

INVITE message to the selection of the server and reception

of corresponding 200 OK message. In the Selection phase,

the scheduler selects the server which has minimum average

response time to forward the input INVITE message.

4. THE PROPOSED ALGORITHM

The major novelty of the current algorithm is making use of

average response time factor in order to increase overall

throughput. To this end, the load scheduler uses a separate

response time window for each server. Each window contains

the history of response times of a server over the time. Since

the farthest values of response time for a server are less

important than the recent values, the size of the window is

restricted to a fixed length, .

When an incoming message receives to the load scheduler, the

load scheduler first classifies it to INVITE or Non-INVITE.

Non-INVITE messages are sent to the Forward or Drop

module, directly. INVITE messages are queued in order to

select the best server to which they will be forwarded. The

load scheduler calculates the average response time value for

each window and selects the server with minimum average

value. The Call ID list contains pairs of

 . A pair

indicates that was chosen for processing .

When the finishes processing , it sends a

response back to the load scheduler, and the load scheduler

plays its second role, as a relay, inserts the pair
 to the Call ID list and updates the

window corresponding to that server.

a) Fixed-Sized Window Average Response Time

(FAR) Algorithm:

The first load scheduler is equipped with a fixed-size window

and the average response time is calculated over its slots. We

chose 5, 10, 15 and 20 for and evaluated the results in

Section IV.

b) Fixed-Sized Window Weighted Average Response

Time (FWAR) Algorithm:

The most important limitation for FAR method is that all of

the slots have identical effect on average response time. Since

recent response time values indicate the current processing

power of the server, we used a weighted average response

time (WART) i.e. recent response time values have larger

weights than old ones and WART is calculated using Equation

(1).

 ̅
∑

∑

 (1)

 ̅ indicates average response time, is the weight of the
and represents the response time value placed at th window

slot. In our experiments, since the farthest values of response

time for a server are less important than the recent ones, we

used uniform weights which mean that the weight of the most

recent response time is and for the least recent one is 1,

Equation (2).

 (2)

Sci.Int.(Lahore),27(3),2421-2425,2015 ISSN 1013-5316; CODEN: SINTE 8 2423

May-June

5. PERFORMANCE EVALUATION

a) Specifications of Environment

In this section we are to describe the details of the

implementation of the proposed method and network

configurations. Figure 3 illustrates the details of network

configuration used to perform the experiments. Spirent

Abacus 5000 device is a powerful call generator which is

capable of generating 10000 calls per second [16]. It supports

different types of load distributions such as Poisson and

Trapezoid and acts as user agents. We used Poisson

distribution since it has a more normal behaviour than

Trapezoid. The load profile configuration shown in this figure

represents the timing parameters of calls. This device can act

as both a caller and a callee.

IP-PBX LAN - 100 Mbps Ethernet IP-PBX LAN

Domain 0 Domain 1 Domain 2

UAC(s) UAC(s)UAS(s)

IP-PBX LAN - 100 Mbps Ethernet IP-PBX LAN

Scheduler

SIP Proxy Servers

Fig. 3. The test-bed

In order to evaluate the performance of the proposed method

in a condition very close to real world, we used commercial

Asterisk SIP proxy servers [17, 18]. It can report

comprehensive statistics about the status of the server during

the experiments. In the following we used reports of both

Spirent and Asterisk servers for evaluating the proposed

method. The specifications of the load scheduler server and

proxy servers are presented in Figure 3.

b) Performance Metrics

 Average Response Time: The average value of response

time over various call rates (call per second).

 Throughput: The number of successful sessions

established per time.

 Throughput & Average Response Time (heterogeneous

back ends): In this sections, functionality of load

balancing algorithms is inspected in the case that servers

have disparate processing power and capabilities. In most

of configurations, the expectation that all of the servers

have similar processing power is unrealistic. They are

heterogeneous in general. In this experiment, our load

balancer will dispatch the requests to different servers.

 Retransmission rate: Users whose requests have remained

unanswered, proceeds to resend their messages.

In the first set of experiments, we compared the results of

average response time of three proposed methods with the best

proposed algorithm – TLWL-1.75 –[2] versus common Round

Robin method over 8 servers. Different volume of loads are

generated and sent to the load scheduler starting from 10 cps –

low load – to 3000 cps – heavy load. Round robin method is

the worst one because it does not pay any attention to the

current load on the servers and selects a server unconsciously.

TLWL-1.75 dispatches the INVITE message to the server

with lowest work. The work of a server is defined as the

number of INVITE and BYE transactions currently processed

on that server considering a weight of 1 and 0.75 for INVITE

and BYE transactions, respectively. Figure 4 presents that

average response time is decreased in the proposed method

employing FWAR method since it uses WART, and WART is

a better reflector of the current status of the server than the

number of active transactions. WART can be considered as a

cumulative function of response time and expressed in terms

of response time value. This function is monotonically

increasing in response time value. Therefore reducing

response time value can directly affect WART over time.

Since FWAR the load scheduler chooses the server with

minimum WART, further values of WART are not very larger

than current ones.

The second set of experiments cover the system throughput.

Recall from previous discussion on average response time,

one can express that the more the average response time for a

server is, the longer the proxy queue will be. A server with

less average response time has a shorter proxy queue length so

it is able to process more incoming messages leading to higher

throughput. This discussion is shown in Figure 5.

In many deployments, it is not realistic to expect that all nodes

of a cluster have the same server capacity. Some servers may

be more powerful than others, or may be running background

tasks that limit the CPU resources that can be devoted to SIP.

Maximum processing power of the first server is about 300

cps and for second and third servers are 150 cps and 75 cps

respectively. Ideally, the proposed algorithm is expected to

have a rate of 1.75 times of the first server, i.e., 525 cps in this

heterogeneous environment.

The throughputs and average response time of four load

balancing algorithms are shown in Figures 6, 7 and 8. As it is

obvious in these figures, FWAR exhibits maximum

throughput 486 cps that is very close to optimal rate.

These results expose that dynamic algorithm FWAR adapt to

heterogeneous environments much better than other ones since

they observe response times from servers continuously and try

to balance them. Because the first server responses to requests

two times faster than the second one, the ratio of the calls

allocated to it, are also about two times more than the other

one and four times than the third one. It should be noted that

this is happened while the load balancer have no knowledge

about this differences in processing powers of servers.

 2424 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(3),2421-2425,2015

May-June

Fig. 4. Evaluating Average Response Time of the proposed

method

Fig. 5. Throughput

Fig. 6. Throughput (heterogeneous back ends)

Fig. 7. Average Response Time (heterogeneous back ends)

Fig. 8. Summary of concluded results in presence of FWAR

mechanism

Fig. 9. Summary of concluded results in presence of

RR(Round Robin) mechanism

Figures 9 and 10 illustrates retransmission rate for INVITE
and BYE requests from user side, individually. As expected,
no request is resend before received call rate reaches proxy’s
capacity. But upon reaching received call rate to proxy’s
capacity, resend rate increases abruptly and intensifies the
load imposed to proxy considerably. As it is expected, when
we use FWAR mechanism in SIP load balancer,
retransmission rates of messages decrease considerably
compared to the Round Robin mechanism. Overload leads to
loss of OK packages related to the passed calls. So the proxy
is required to resend INVITE requests related to lost packages.
In this case, increase of retransmission rate makes proxy
spend much of its time on resending requests related to
ongoing calls and therefore throughput rate of proxy falls
considerably.

6. CONCLUSION AND FURTHER WORKS
In this paper we examined the problem of load balancing in

SIP network of VoIP connections. The problem is stated as

selecting a server for processing the incoming message in

order to prevent from the overload situations. Few similar

works in this area and other related areas such as HTTP

servers tried to solve this problem by counting the number of

messages, transactions, etc. The most important drawback to

these methods is using an inappropriate overload detection

factor. In the proposed load scheduler each server has a

corresponding window in the load scheduler. The content of

Sci.Int.(Lahore),27(3),2421-2425,2015 ISSN 1013-5316; CODEN: SINTE 8 2425

May-June

each window is the history of response time of the server over

time. The slots are weighted monotonically in decreasing

order i.e. the most recent response time value has the largest

weight for calculating average response time. This strategy in

conjunction with using average response time as the detection

factor is the key advantage of the proposed method.

Evaluation of implementation of the proposed method on real

SIP servers showed 1-2% performance enhancement in

average response time related to best similar works and 15%

compared to round robin algorithm.

We are working on using an infinite-length window and better

method of weighting to this window slots. The efficiency of

the extended method is being proved mathematically.

ACKNOWLEDGMENT

We are grateful to Islamic Azad University, Quchan branch

authorities, for their useful collaboration.

REFERENCES

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,

J. Peterson, R. Sparks, M. Handley, and E. Schooler,

"SIP: Session initiation protocol", 2002.

[2] H. Jiang, A. Iyengar, E. Nahum, W. Segmuller, A.N.

Tantawi, and CharlesP.Wright, "Design, Implementation,

and Performance of a Load Balancer for SIP Server

Clusters". IEEE/ACM Transactions on Networking 20

(2012) 1190-1202.

[3] K. Singh, and H. Schulzrinne, "Failover, load sharing

and server architecture in SIP telephony". Computer

Communications 30 (2007) 927–942.

[4] V. Cardellini, E. Casalicchio, M. Colajanni, and P.S. Yu,

"The state of the art in locally distributed Web-server

systems". Comput. Surveys 34 (2002) 263–311.

[5] D. Dias, W. Kish, R. Mukherjee, and R. Tewari. "A

scalable and highly available Web server". in IEEE

Compcon. 1996.

[6] J.-S. Leu, H.-C. Hsieh, Y.-C. Chen, and Y.-P. Chi,

"Design and Implementation of a Low Cost DNS-based

Load Balancing Solution for the SIP-based VoIP

Service". Proc. IEEE Asia-Pacific Services Computing

Conference2008

[7] C. Shen, H. Schulzrinne, and E. Nahum, "Application

Layer Feedback-based SIP Server Overload Control",

2008.

[8] Yun-JungCheng, KuochenWang, Rong-HongJan,

ChienChen, and Chia-YuanHuang, "Efficient Failover

and Load Balancing for Dependable SIP Proxy Servers".

Proc. IEEE Symposium on Computers and

Communications, Marrakech, 6-9 July 2008 pp. 1153-

1158

[9] J. Challenger, P. Dantzig, and A. Iyengar. "A scalable

and highly available system for serving dynamic data at

frequently accessed Web sites". in ACM/IEEE Conf.

Supercomput. 1998.

[10] A. Iyengar, J. Challenger, D. Dias, and P. Dantzig,

"High-performance Web site design techniques". IEEE

Internet Comput. 4 (2000) 17–26.

[11] Z. Fei, S. Bhattacharjee, E. Zegura, and M. Ammar. "A

novel server selection technique for improving the

response time of a replicated service". in IEEE

INFOCOM. 1998.

[12] D. Mosedale, W. Foss, and R. McCool, "Lessons learned

administering Netscape’s Internet site". IEEE Internet

Comput. 1 (1997) 28-35.

[13] G. Ciardo, A. Riska, and E. Smirni, "EQUILOAD: A

load balancing policy for clustered Web servers".

Perform. Eval. 46 (2001) 101–124.

[14] M. Harchol-Balter, M. Crovella, and C.D. Murta, "On

choosing a task assignment policy for a distributed

server system". J. Parallel Distrib. Comput. 59 (1999)

204–228.

[15] B. Schroeder, and M. Harchol-Balter, "Evaluation of task

assignment policies for supercomputing servers: The

case for load unbalancing and fairness". Cluster Comput.

7 (2004) 151–161.

[16] www.spirent.com, "Spirent: The New generation of

Ethernet testing".

[17] www.asterisk.org.

[18] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,

J. Peterson, R. Sparks, M.Handley, E. Schooler, SIP:

Session Initiation Protocol, RFC 3261, December, 2002.

